BMP9 Induces Cord Blood-Derived Endothelial Progenitor Cell Differentiation and Ischemic Neovascularization via ALK1.
نویسندگان
چکیده
OBJECTIVE Modulating endothelial progenitor cells (EPCs) is essential for therapeutic angiogenesis, and thus various clinical trials involving EPCs are ongoing. However, the identification of environmental conditions and development of optimal methods are required to accelerate EPC-driven vasculogenesis. APPROACH AND RESULTS We evaluated gene expression profiles of cord blood-derived EPCs and endothelial cells to identify the key factors in EPC→endothelial cell differentiation and to show that transforming growth factor-β family members contribute to EPC differentiation. The expression levels of activin receptor-like kinase 1 (ALK1) and its high-affinity ligand, bone morphogenetic protein 9 (BMP9) were markedly changed in EPC→endothelial cell differentiation. Interestingly, BMP9 induced EPC→endothelial cell differentiation and EPC incorporation into vessel-like structures by acting on ALK1 expressed on EPCs in vitro. BMP9 also induced neovascularization in mice with hindlimb ischemia by increasing vessel formation and the incorporation of EPCs into vessels. Conversely, neovascularization was impaired when ALK1 signaling was blocked. Furthermore, EPCs exposed to either short- or long-term BMP9 stimulation demonstrated these functions in EPC-mediated neovascularization. CONCLUSIONS Collectively, our results indicated that BMP9/ALK1 augmented vasculogenesis and angiogenesis, and thereby enhanced neovascularization. Thus, we suggest that BMP9/ALK1 may improve the efficacy of EPC-based therapies for treating ischemic diseases.
منابع مشابه
BMP9/ALK1 inhibits neovascularization in mouse models of age-related macular degeneration
Age-related macular degeneration (AMD) is the leading cause of blindness in aging populations of industrialized countries. The drawbacks of inhibitors of vascular endothelial growth factor (VEGFs) currently used for the treatment of AMD, which include resistance and potential serious side-effects, require the identification of new therapeutic targets to modulate angiogenesis. BMP9 signaling thr...
متن کاملIdentification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells.
ALK1 is an endothelial-specific type I receptor of the TGFbeta receptor family whose heterozygous mutations cause hereditary hemorrhagic telangiectasia type 2. Although TGFbeta1 and TGFbeta3 have been shown to bind ALK1 under specific experimental conditions, they may not represent the physiological ligands for this receptor. In the present study, we demonstrate that BMP9 induces the phosphoryl...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملTherapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies.
Cell Therapy For Therapeutic Vascularization Endothelial Progenitor Cells and Postnatal Vasculogenesis: Experimental Evidence The option of performing full-scale endothelial cell transplantation to optimize local neovascularization is daunting if even feasible. An alternative, attractive strategy is designed to exploit the conceptual notion that endothelial cells and hematopoietic stem cells we...
متن کاملMetformin inhibits ALK1-mediated angiogenesis via activation of AMPK
Anti-VEGF therapy has been proven to be effective in the treatment of pathological angiogenesis. However, therapy resistance often occurs, leading to development of alternative approaches. The present study examines if AMPK negatively regulates ALK1-mediated signaling events and associated angiogenesis. Thus, we treated human umbilical vein endothelial cells with metformin as well as other phar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 35 9 شماره
صفحات -
تاریخ انتشار 2015